Navigation and service

Computational Mass Spectrometry

Native mass spectrometry (MS) allows the native structures of biomolecules to be probed in a vacuum.  A great deal has been clarified about how molecular structures change on passing from water to the gas phase. With the help of soft ionization techniques, ion mobility-MS (IM-MS) can reveal the global geometry of biomolecules and their complexes, via the measured charge state distribution and the collisional cross section (CCS). Extensive molecular simulation  is capable of disclosing the structural and dynamic behaviors of proteins in the gas phase, as already demonstrated by several groups including ours. In addition, the method can shed light on  proton dynamics on bimolecular  structural determinants.


[1] Liu L, Dong X, Liu Y, Österlund N, Gräslund A, Carloni P, Li J. (2019) Role of hydrophobic residues for the gaseous formation of helical motifs. Chem. Commun. (Camb) 55(35): 5147-5150. doi: 10.1039/c9cc01898k

[2] Li J, Lyu W, Rossetti G, Konijnenberg A, Natalello A, Ippoliti E, Orozco M, Sobott F, Grandori R, Carloni P. (2017) Proton Dynamics in Protein Mass Spectrometry. J. Phys. Chem. Lett. 8(6): 1105-1112. doi: 10.1021/acs.jpclett.7b00127

[3] Li J, Santambrogio C, Brocca S, Rossetti G, Carloni P, Grandori R. (2016) Conformational effects in protein electrospray-ionization mass spectrometry.Mass. Spectrom. Rev. 2016 Jan-Feb;35(1):111-22. doi: 10.1002/mas.21465

[4] Arcella A, Dreyer J, Ippoliti E, Ivani I, Portella G, Gabelica V, Carloni P, Orozco M. (2015) Structure and dynamics of oligonucleotides in the gas phase. Angew Chem Int Ed Engl. 2015 Jan 7;54(2):467-71. doi: 10.1002/anie.201406910