Quantum Control

Our institute combines techniques from quantum optimal control with applications in few- and many-body systems for the development of quantum technologies.

Head: Prof. Dr. Tommaso Calarco

News and Events

Detailaufnahme des OpenSuperQ

Helmholtz Quantum Center Launched

Jülich, 28 January 2020 – Quantum computer research will be established at Forschungszentrum Jülich as a national priority. The Helmholtz Quantum Center (HQC) will be a central technology laboratory which will cover the entire range of quantum research – from investigating quantum materials to developing prototypes. The project, which is funded by the Helmholtz Association with almost € 50 million, is launching in January 2020.

Single-molecule devices

PGI Colloquium: Prof. Dr. Elke Scheer, University of Konstanz, Germany

The possibility to fabricate electronic devices with functional building blocks of atomic size is a major driving force of nanotechnology. Key elements in microelectronics are reliable switches and memories as well as devices showing spin-dependent transport phenomena.

Focus

pgi8_jpg

Optimal Control

Quantum optimal control is concerned with developing innovative and efficient approaches to manipulate quantum systems. This might be achieved by avoiding adverse effects, such as decoherence or the population of undesired states, and by exploiting numerical optimizations.

Few Body Systems

Few-Body Systems

A microscopic understanding of quantum systems is crucial for their engineering. Detailed knowledge about the interactions within a system as well as its coupling to external fields can provide opportunities for accurate quantum state manipulation and quantum sensing.

Few Body Systems

Many-Body Systems

The quest for a better theoretical understanding and experimental exploitation of many-body phenomena motivates us to develop and apply innovative control approaches as well as numerical simulation techniques such as tensor network algorithms.