link to homepage

Institute of Neuroscience and Medicine

Navigation and service

MEG Physics

Magnetoencephalography (MEG) is a non-invasive measurement for the detection of the tiny magnetic field components originated from the information processes in the living human brain. Due to the excellent time resolution (within millisecond range) of MEG, the method is ideal for the investigation of fast neuromagnetic brain responses. The main focus of the MEG group is related to soft- and hardware developments and implementations in order to provide new concepts in the field of MEG data analysis. Combining different strategies for analysis and information from other modalities, such as high resolution magnetic resonance tomography (MRI), to improve for example MEG's source localization ability, is a primary element. The everlasting challenge here is to shift the limitations of the detectability and the accuracy of source localization of weak magnetic field components.

A further topic of research is related to real-time data analysis of brain responses utilizing MEG. For this, we work on the development and implementation of specific soft- and hardware components in collaboration with partner institutes from the Research Centre. In combination with neurofeedback techniques, real-time MEG data analysis offers a great potential for the development of novel diagnostic routines and therapy in neurology and psychiatry.

Research Teams


MEG Methodology

The main interest of the Magnetoencephalography (MEG) Methodology group is the development and implementation of novel soft- and hardware components in the field of MEG research. A major focus is to establish real time data acquisition and signal processing in order to acquire new insights into ongoing electrophysiological brain processes.



The major focus of the MEG-MR group is to make use of both modalities in order to get a better understanding of how the living brain works.


Irene Neuner, Jorge Arrubla, Cornelius J Werner, Konrad Hitz, Frank Boers, Wolfram Kawohl, Jon N Shah , "The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study." PLoS ONE 9(2): e88214, Feb.2014

L. Breuer, J. Dammers, T. P. L. Roberts, and N. J. Shah, “A Constrained ICA Approach for Real-Time Cardiac Artifact Rejection in Magnetoencephalography,” IEEE Trans. Biomed. Eng., vol.61 pp 405-414 , no. 2, Feb. 2014.

M. I. Faley, U. Poppe, R. E. Dunin-Borkowski, M. Schiek, F. Boers, H. Chocholacs, J. Dammers, E. Eich, N. J. Shah, A. B. Ermakov, V. Y. Slobodchikov, Y. V. Maslennikov, and V. P. Koshelets, “High-Tc DC SQUIDs for Magnetoencephalography,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1600705–1600705, Jun. 2013.

L. Breuer, M. Axer, and J. Dammers, “A new constrained ICA approach for optimal signal decomposition in polarized light imaging.,” J. Neurosci. Methods, vol. 220, no. 1, pp. 30–38, Sep. 2013.

I. Neuner, T. Warbrick, J. Arrubla, J. Felder, A. Celik, M. Reske, F. Boers, and N. J. Shah, “EEG acquisition in ultra-high static magnetic fields up to 9.4 T.,” Neuroimage, vol. 68, pp. 214–20, Mar. 2013.

T. Warbrick, J. Arrubla, F. Boers, I. Neuner, and N. J. Shah, “Attention to Detail: Why Considering Task Demands Is Essential for Single-Trial Analysis of BOLD Correlates of the Visual P1 and N1.,” J. Cogn. Neurosci., Sep. 2013.

J. Dammers, L. Breuer, G. Tabbí, and M. Axer, “Optimized Signal Separation for 3D-Polarized Light Imaging,” in in Functional Brain Mapping and the Endeavor to Understand the Working Brain, F. Signorelli, Ed. InTech, 2013, pp. 355 – 374.

J. Arrubla, I. Neuner, D. Hahn, F. Boers, and N. J. Shah, “Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field.,” PLoS One, vol. 8, no. 5, p. 7, May 2013.

M. I. Faley, U. Poppe, R. E. D. Borkowski, M. Schiek, F. Boers, H. Chocholacs, J. Dammers, E. Eich, N. J. Shah, A. B. Ermakov, V. Y. Slobodchikov, Y. V. Maslennikov, and V. P. Koshelets, “Magnetoencephalography using a Multilayer hightc DC SQUID Magnetometer,” Phys. Procedia, vol. 36, no. 0, pp. 66–71, Jan. 2012.

J. Dammers, L. Breuer, M. Axer, M. Kleiner, B. Eiben, D. Grässel, T. Dickscheid, K. Zilles, K. Amunts, N. J. Shah, and U. Pietrzyk, “Automatic identification of gray and white matter components in polarized light imaging.,” Neuroimage, vol. 59, no. 2, pp. 1338–47, Jan. 2012.

J. Dammers and M. Schiek, “Detection of Artifacts and Brain Responses Using Instantaneous Phase Statistics in Independent Components,” in in Magnetoencephalography, W. Pang, Elizabeth, Ed. InTech, 2011, pp. 1–20.

Axer M, Amunts K, Gräßel D, Palm C, Dammers J, Axer H, , Pietrzyk U, K. Zilles. (2011) "A Novel Approach to the Human Connectome: Ultra-High Resolution Mapping of Fiber Tracts in the Brain." Neuroimage, Vol 54(2), 1091-1101

M. Axer, D. Grässel, M. Kleiner, J. Dammers, T. Dickscheid, J. Reckfort, T. Hütz, B. Eiben, U. Pietrzyk, K. Zilles, and K. Amunts, “High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging.,” Front. Neuroinform., vol. 5, p. 34, Jan. 2011.

R. Langner, T. Kellermann, F. Boers, W. Sturm, K. Willmes, and S. B. Eickhoff, “Modality-Specific Perceptual Expectations Selectively Modulate Baseline Activity in Auditory, Somatosensory, and Visual Cortices.,” Cereb. Cortex, vol. 21, no. 12, pp. 2850–62, Apr. 2011.

M. Dyck, J. Loughead, T. Kellermann, F. Boers, R. C. Gur, and K. Mathiak, “Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala.,” Neuroimage, vol. 54, no. 3, pp. 2503–13, Mar. 2011.

Dammers, J., Axer, M., Grässel, D., Palm, C., Zilles, K., Amunts, K., et al. (2010). Signal enhancement in polarized light imaging by means of independent component analysis. Neuroimage, 49(2), 1241-8.

Thoennessen H., Boers F., Dammers J., Chen Y-H., Norra C., Mathiak K (2010). Early sensory encoding of affective prosody: Neuromagnetic tomography of emotional category changes. Neuroimage, 250-259

C. Palm, M. Axer, D. Gräßel, J. Dammers, J. Lindemeyer, K. Zilles, U. Pietrzyk, and K. Amunts, “Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain - Registration of Polarised Light Images and Reorientation of Fibre Vectors.,” Front. Hum. Neurosci., vol. 4, no. 9, pp. 1–16, Jan. 2010.

J. Seubert, T. Kellermann, J. Loughead, F. Boers, C. Brensinger, F. Schneider, and U. Habel, “Processing of disgusted faces is facilitated by odor primes: a functional MRI study.,” Neuroimage, vol. 53, no. 2, pp. 746–56, Nov. 2010.

J. Seubert, J. Loughead, T. Kellermann, F. Boers, C. M. Brensinger, and U. Habel, “Multisensory integration of emotionally valenced olfactory-visual information in patients with schizophrenia and healthy controls.,” J. Psychiatry Neurosci., vol. 35, no. 3, pp. 185–94, May 2010.

Chen Yu-Han, Edgar J. Christopher, Holroyd Tom, Dammers Jürgen, Thönneßen Heike, Roberts Timothy P.L., Mathiak Klaus (2010). Neuromagnetic oscillations to emotional faces and prosody. European Journal of Neuroscience, Vol. 31, pp. 1818–1827, 2010

Chen Y-H; Dammers J.; Boers F.; Leiberg S.;Mathiak K (2009). The temporal dynamics of insula activity to disgust and happy facial expressions: A magnetoencephalography study. Neuroimage, (2009), 1921-1928

D. Gräßel, M. Axer, C. Palm, J. Dammers, K. Amunts, U. Pietrzyk, and K. Zilles, “Visualization of Fiber Tracts in the Postmortem Human Brain by Means of Polarized Light,” Neuroimage, vol. 47, no. Supplement 1, p. 142, Jul. 2009.

Weidner R., Boers F., Mathiak K., Dammers J., Fink G.R (2009). The temporal dynamics of the Müller-Lyer illusion. Cerebral Cortex, published online October 2009

Zvyagintsev M., Nikolaev A.R., Thoennessen H., Sachs O., Chen Y-H., Dammers J. and Mathiak K (2009). Spatially congruent visual motion modulates activity of the primary auditory cortex. Exp. Brain Research, 198(2-3):391-402.

M. Axer, J. Dammers, D. Gräßel, C. Palm, K. Amunts, U. Pietrzyk, and K. Zilles, “Nerve Fiber Mapping in Histological Sections of the Human Brain by Means of Polarized Light,” Brain, 2008.

Thoennessen H., Zvyagintsev M., Harke K.C., Boers F., Dammers J., Norra Ch., Mathiak K (2008). Optimized mismatch negativity paradigm reflects deficits in schizophrenia patients. A combined EEG and MEG study. Biological Psychology, Vol 77, 205-216

Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev, M., Pietrzyk, U., et al. (2008). Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE transactions on bio-medical engineering, 55(10), 2353-62

Zvyagintsev M., Nikolaev A.R., Thoennessen H., Dammers J., Boers F., Mathiak K. An automatic procedure for the analysis of electric and magnetic mismatch negativity based on anatomical brain mapping. Journal of Neuroscience Methods (2008),Vol. 168, 325-333

A. Heinzel, H. Hautzel, T. D. Poeppel, F. Boers, M. Beu, and H.-W. Mueller, “Neural correlates of subliminal and supraliminal letter processing--an event-related fMRI study.,” Conscious. Cogn., vol. 17, no. 3, pp. 685–99, Sep. 2008.

Dammers, J. Mohlberg, H., Boers, F., Amunts, K., Mathiak, K. A new toolbox for combining magnetoencephalo­graphic source analysis and cytoarchitectonic probabilistic data for anatomical classification of dynamic brain activity. Neuroimage 34 (2007), 1577 - 1587

H. Thoennessen, M. Zvyagintsev, K. C. Harke, F. Boers, J. Dammers, C. Eulitz, K. Mathiak, and C. Norra, “Preattentive auditory processing – A comparison between traditional and optimized paradigms in EEG and MEG,” Clin. Neurophysiol., vol. 118, no. 4, pp. e103–e104, Apr. 2007.

Additional Information


Group Leader

J. Dammers, PhD

building: 15.9, room: 2007

phone: +49-2461-61-2106
fax: +49-2461-61-2820


Institut für Neurowissenschaften und Medizin (INM-4)
Forschungszentrum Jülich
52425 Jülich
Building: 15.9