Pre-prints

2025

  • Bouss P., Nestler S., Fischer K., Merger C., René A., Helias M. (2025) Characterizing Neural Manifolds' Properties and Curvatures using Normalizing Flows.
    arXiv: 10.48550/arXiv.2506.12187

  • Foos N., Epping B., Grundler J., Ciobanu A., Singh A., Bode T., Helias M., Dahmen D. (2025) Beyond-mean-field fluctuations for the solution of constraint satisfaction problems.
    arXiv: 10.48550/arXiv.2507.10360

  • Oberste-Frielinghaus J., Kurth A., Göltz J., Kriener L, Ito J., Petrovici M.A., Grün S. (2025) Synchronization and semantization in deep spiking networks.
    arXiv: 10.48550/arXiv.2508.12975

  • Quercia A., Cao Z., Bangun A., Paul RD., Morrison A., Assent I., Scharr H. (2025) 1LoRA: Summation Compression for Very Low-Rank Adaptation.
    arXiv: 10.48550/ARXIV.2503.08333

  • Quercia A., Yildiz E., Cao Z., Krajsek K., Morrison A., Assent I., Scharr H. (2025) Enhancing Monocular Depth Estimation with Multi-Source Auxiliary Tasks.
    arXiv: 10.48550/ARXIV.2501.12824

  • Rathore O., Paul R., Morrison A., Scharr H., Pfaehler E. (2025) Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation.
    arXiv: 10.48550/arxiv.2503.22271

  • Ringel Z., Rubin N., Mor E., Helias M., Seroussi I. (2025 )Applications of Statistical Field Theory in Deep Learning.
    arXiv: 10.48550/arxiv.2502.18553

  • Rubin N., Fischer K., Lindner J., Dahmen D., Seroussi I., Ringel Z., Krämer M., Helias M. (2025) From Kernels to Features: A Multi-scale Adaptive Theory of Feature Learning.
    arXiv: 10.48550/arXiv.2502.03210

  • Schutzeichel L., Bauer J., Bouss P., Musall S., Dahmen D., Helias M. (2025) Transient recurrent dynamics shape representations in mice.
    bioRxiv: 10.1101/2025.06.17.659440

  • Senk J., Kurth A., Furber S., Gemmeke T., Golosio B., Heittmann A., Knight JC., Müller E., Noll T., Nowotny T., Coppola GP., Peres L., Rhodes O., Rowley A., Schemmel J., Stadtmann T., Tetzlaff T., Tiddia G., J VAS., Villamar J., Diesmann M. (2025) Constructive community race: full-density spiking neural network model drives neuromorphic computing.
    arXiv: 2505.21185

2024

  • Epping B., René A., Helias M., Schaub MT. (2024) Graph Neural Networks Do Not Always Oversmooth.
    arXiv: 10.48550/arXiv.2406.02269

  • Jiang H.-J., Aćimović J., Manninen T., Ahokainen I., Stapmanns J., Lehtimäki M., Diesmann M., van Albada SJ., Plesser HE., Linne M.-L. (2024) Modeling Neuron-astrocyte Interactions in Neural Networks Using Distributed Simulation.
    bioRxiv: 10.1101/2024.11.11.622953

  • Kurth AC., Albers J., Diesmann M. , van Albada SJ. (2024) Cell-type specific projection patterns promote balanced activity in cortical microcircuits.
    bioRxiv: 10.1101/2024.10.03.616539

  • Oberste-Frielinghaus J., Morales-Gregorio A., Essink S., Kleinjohann A., Grün S., Ito J. (2024) Detection and Removal of Hyper-synchronous Artifacts in Massively Parallel Spike Recordings.
    bioRxiv: 10.1101/2024.01.11.575181

  • Pronold J., Morales-Gregorio A., Rostami V., van Albada SJ. (2024) Cortical multi-area model with joint excitatory-inhibitory clusters accounts for spiking statistics, inter-area propagation, and variability dynamics.
    bioRxiv: 10.1101/2024.01.30.577979

2023

  • Fischer K., David D., Helias M. (2023) Optimal signal propagation in ResNets through residual scaling.
    arXiv: 10.48550/arXiv.2305.07715

2022

  • Keup C., Helias M. (2022) Origami in N dimensions: How feed-forward networks manufacture linear separability.
    arXiv: 10.48550/arXiv.2203.11355

  • Kleinjohann A., Berling D., Stella A., Tetzlaff T., Grün S. (2022) Model of multiple synfire chains explains cortical spatio-temporal spike patterns.
    bioRxiv: 10.1101/2022.08.02.502431

  • Korcsak-Gorzo A., Linssen C., Albers J., Dasbach S., Duarte R., Kunkel S., Morrison A., Senk J., Stapmanns J., Tetzlaff T., Diesmann M., van Albada SJ. (2022) Phenomenological modeling of diverse and heterogeneous synaptic dynamics at natural density. arXiv: 10.48550/arXiv.2212.05354

  • Stubenrauch J., Keup C., Kurth AC., Helias M., van Meegen A. (2022) Phase Space Analysis of Chaotic Neural Networks.
    arXiv: 10.48550/arXiv.2210.07877
Last Modified: 03.09.2025