Keratins Contribute to Cell Stiffness
Research group demonstrates function of an entire group of proteins
Jülich, 29 October 2013 – For years, scientists had suspected what researchers from Jülich, Leipzig, and Aachen have now succeeded in demonstrating: keratins, an important group of structural proteins, ensure that cells are sufficiently stable. This lends skin and gland tissue, for example, the necessary firmness and elasticity. The scientists isolated and analysed genetically modified epidermal cells – known as keratinocytes – from mouse embryos. The results have now been published in the prestigious journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The new findings could help to explain genetic skin diseases such as epidermolysis bullosa, which is also know as the butterfly disease.
original message:
Keratine machen Zellen steif
Forschergruppe weist erstmals Funktion einer ganzen Proteingruppe nach
Jülich, 29. Oktober 2013 – Seit Jahren hatten es Wissenschaftler vermutet, nun haben es Forscher aus Jülich, Leipzig und Aachen erstmals nachgewiesen: Keratine, eine wichtige Gruppe von Strukturproteinen, sorgen dafür, dass Zellen über die nötige Stabilität verfügen. Dadurch erhält etwa Haut, aber auch Drüsengewebe die erforderliche Festigkeit und Spannkraft. Die Wissenschaftler haben dazu genetisch veränderte Zellen der Oberhaut, sogenannte Keratinozyten, aus Embryonen der Maus gewonnen und untersucht. Die Ergebnisse sind jetzt in der renommierten Zeitschrift "Proceedings of the National Academy of Sciences of the United States of America" (PNAS) erschienen. Die neuen Erkenntnisse könnten helfen, genetisch bedingte Hautkrankheiten wie Epidermolysis bullosa, auch als Schmetterlingskrankheit bekannt, zu erklären.
Was Zellen stabil macht beziehungsweise gegen mechanische Beanspruchung schützt, ist eine der aktuellen Schlüsselfragen in der Zellbiologie. "Es steht zwar in jedem Lehrbuch, dass Keratine Zellen steif machen, aber eben mit dem Hinweis, dass dies vermutet wird. Bislang gab es nur sehr wenige Messdaten und noch keinen eindeutigen Nachweis", erklärt Prof. Rudolf Merkel vom Institute of Complex Systems am Forschungszentrum Jülich, Co-Autor der Studie. Der Nachweis war bislang schwierig, da Keratin nicht ein einziges Protein ist, sondern eine ganze Proteinfamilie. Dem Team um Prof. Thomas Magin vom Translationszentrum für Regenerative Medizin und dem Institut für Biologie der Universität Leipzig ist es gelungen, Keratinozyten von Maus-Embryonen genetisch so zu verändern, dass keine Keratine darin vorkommen. Normalerweise bestehen bis zu zwei Drittel der Proteinmasse von Keratinozyten aus diesen Strukturproteinen.
Die Jülicher Experten für zelluläre Biomechanik haben die Steifigkeit der genveränderten Zellen mithilfe der Rasterkraftmikroskopie gemessen. Dabei wird mit einer weichen Feder auf die Zelle gedrückt. Die Forscher messen jeweils die Kraft, die benötigt wird, um die Zelle bis zu einer bestimmten Tiefe einzudrücken. Das Ergebnis: Bei den genveränderten Keratinozyten reichten 30 bis 40 Prozent weniger Krafteinsatz, um die gleichen Resultate wie bei unveränderten Zellen zu erzielen. „Daran sieht man, dass die Zelle viel weicher ist und mechanischer Beanspruchung deutlich schlechter widersteht“, erläutert der Jülicher Forscher Dr. Bernd Hoffmann, der zusammen mit Prof. Merkel federführend an der Studie beteiligt ist. Überrascht hat die Wissenschaftler, dass sie die Unterschiede nicht nur bei Zellverbänden, sondern schon auf der Ebene der einzelnen Zelle festgestellt haben. Offensichtlich wirken Keratine schon früher und nicht erst, wenn sich Zellschichten bilden.
Weitere Untersuchungen der Arbeitsgruppe von Prof. Rudolf Leube vom Institut für Molekulare und Zelluläre Anatomie der RWTH Aachen zeigten außerdem, dass die innere Stabilität der genetisch veränderten Zellen deutlich geringer ist. Dazu fügten sie kleine magnetische Kugeln in die Zellen ein und bewegten diese dann mithilfe eines Elektromagneten. Bei unveränderten Keratinozyten rutschte die Kugel wieder in ihre Ausgangsposition zurück, wenn der Magnet ausgeschaltet wurde. Bei den veränderten Zellen blieb die Kugel an der Position, in die sie der Magnet gezogen hatte, und wurde schließlich sogar komplett aus der Zelle gerissen.
Die Ergebnisse sind ein wichtiger Fortschritt für die Forschung. Eine Reihe von Krankheiten beim Menschen hängen mit der Proteingruppe der Keratine zusammen und werden vermutlich durch die schlechtere mechanische Stabilität der Zellen hervorgerufen. Der Nachweis der Funktionalität von Keratinen könnte eine Erklärung liefern. Ein Beispiel ist die genetisch bedingte Hautkrankheit Epidermolysis bullosa, die sogenannte Schmetterlingskrankheit. Dabei führt eine angeborene Mutation in bestimmten Genen schon im Kleinkindalter zu Blasen und Wunden am und im ganzen Körper. Die Krankheit kann zu schweren Behinderungen oder gar zum frühzeitigen Tod führen.
Keratine sind nicht nur bei der Haut, sondern bei allen Trennschichten im Körpergewebe wichtig – beispielsweise auch bei äußeren Schichten von Drüsengeweben, etwa bei der Bauspeicheldrüse. Die äußeren Schichten schützen die inneren, sehr weichen Drüsenzellen. Dabei sind sie mitunter kräftigen mechanischen Beanspruchungen, etwa durch Bewegung oder Stöße, ausgesetzt. Nachdem die Wissenschaftler sich bislang nur einzelne Zellen angeschaut haben, werden sie nun komplette Gewebe untersuchen. Dabei wollen sie herausfinden, welche zusätzlichen oder verstärkten Effekte Keratine auf die Mechanik von Geweben ausüben.
Originalveröffentlichung:
Keratins as the main component for the mechanical integrity of keratinocytes. Lena Ramms Gloria Fabris, Reinhard Windoffer, Nicole Schwarz, Ronald Springer, Chen Zhou, Jaroslav Lazar, Simone Stiefel, Nils Hersch, Uwe Schnakenberg, Thomas M. Magin, Rudolf E. Leube, Rudolf Merkel, and Bernd Hoffmann.
Proceedings of the National Academy of Sciences of the United States of America (PNAS), Oktober 2013.
www.pnas.org/cgi/doi/10.1073/pnas.1313491110
Ansprechpartner:
- Institute of Biological Information Processing (IBI)
- Mechanobiology (IBI-2)
Room 1.18
Dr. Bernd Hoffmann
Senior Scientist and Group Leader
- Institute of Biological Information Processing (IBI)
- Mechanobiology (IBI-2)
Room 119
Pressekontakt:
Erhard Zeiss
Wissenschaftlicher Kommunikationsreferent
- Institute of Neurosciences and Medicine (INM)
- Structural and Functional Organisation of the Brain (INM-1)
Room 3033