Theory

About

The theory of electron microscopy includes the modelling of all components of a microscope and the interaction of the electron wave with the sample to be investigated, as well as the simulation and interpretation of the experimentally measured spectra and images. In addition, electron optics deals with the modelling and simulation of novel optical components. The application of the theory leads to the development of numerical algorithms for digital image processing, which is used in a variety of ways to solve material science problems.

Research Topics

  • instrument development & improvement
  • microscope performance characterization and resolution assessment
  • microscope characterization and aberration measurement
  • aberration monitoring and correction
  • quantitative high-resolution transmission electron microscopy
  • numerical image analysis, image simulation and data processing
  • simulation of HRTEM/HRSTEM imaging & development of phase-retrieval methods
  • wave function reconstruction
  • theory of electron diffraction and imaging
  • simulation of electron scattering and solution of the inverse scattering problem
  • electrostatic potential reconstruction
  • theory and characterization of electron detectors

contact

Dr. Markus Lentzen

Staff Scientist, ER-C-1

  • er-c
  • er-c-1
Building 05.7 /
Room 2020
+49 2461/61-85177
E-Mail

Selected publications

Lentzen, M. (2023). Spin-Dependent Nonlinear Contrast Transfer in Transmission Electron Microscopy. Microscopy and microanalysis, 29(1), 418-426.

Urban, K. W., Barthel, J., Houben, L., Jia, C. L., Jin, L., Lentzen, M., Mi, S.-B., Thust, A. & Tillmann, K. (2023). Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM). Progress in Materials Science, 133, 101037.

Lentzen, M. (2019). Relativistic correction of atomic scattering factors for high-energy electron diffraction. Foundations of Crystallography, 75(6), 861-865.

Lentzen, M. (2017). The refractive index in electron microscopy and the errors of its approximations. Ultramicroscopy, 176, 139-145.

Barthel, J., Lentzen, M., & Thust, A. (2017). On the influence of the electron dose rate on the HRTEM image contrast. Ultramicroscopy, 176, 37-45.

Lentzen, M. (2014). No surprise in the first born approximation for electron scattering. Ultramicroscopy, 136, 201-210.

Jia, C. L., Barthel, J., Gunkel, F., Dittmann, R., Hoffmann-Eifert, S., Houben, L., Lentzen, M., & Thust, A. (2013). Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3. Microscopy and Microanalysis, 19(2), 310-318.

Urban, K. W., Jia, C. L., Houben, L., Lentzen, M., Mi, S. B., & Tillmann, K. (2009). Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1903), 3735-3753.

Lentzen, M. (2008). Contrast transfer and resolution limits for sub-angstrom high-resolution transmission electron microscopy. Microscopy and microanalysis, 14(1), 16-26.

Lentzen, M. (2006). Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microscopy and Microanalysis, 12(3), 191-205.

Jia, C. L., Lentzen, M., & Urban, K. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microscopy and Microanalysis, 10(2), 174-184.

Lentzen, M., Jia, C. L., & Urban, K. (2003). Atomic Structure Imaging Using an Aberration-Corrected Transmission Electron Microscope. Microscopy and Microanalysis, 9(S03), 48-49.

Last Modified: 10.04.2025