Project MCFD-CMP - Comparison of Meshing and CFD Methods for Accurate Flow Simulations on HPC Systems

Project partners

Project description

The expertise of the collaborators at the two centers AICS and JSC lies in the development of methods for Computational Fluid Dynamics (CFD) simulations on HPC systems. Despite the high efficiency of the simulation codes developed within the two groups on the K-computer and the JUQUEEN, respectively, the methods for the computation of the flow and meshing are quite different and have their advantages and disadvantages. While the AICS code relies on the Building Cube Method to generate the mesh and uses a structured solver with a Finite Difference method, the JSC code solves for the flow variables on hierarchical Cartesian meshes using a Finite Volume, or a Lattice-Boltzmann method. The aim of the proposed JLESC cooperation is to compare the accuracy and efficiency of the applied methods in the two CFD simulation codes on the two hardware architectures based on predefined benchmark cases. Within this scope, porting of the simulation software to both HPC systems, the K-computer and the JUQUEEN, is planned. This project will not only help to further develop an understanding for computational methods for large-scale CFD simulations for the next supercomputer generation, but will also characterize the efficiency of the current codes on different hardware architectures. That is, by a performance analysis of both codes on both machines drawbacks in current implementations will be exposed and architectural features will be explored for code acceleration. Such a cooperation is only possible by bilateral support activities which will lead to a knowledge exchange on the hardware side, in CFD methods, parallelization, and the associated meshing techniques. Hence, expertises of the centers in these fields will strongly be enhanced in the course of this project. To foster the cooperation, mutual short-time stays of the involved scientists are planned.

Project website at JLESC: MCFD-CMP

Last Modified: 04.10.2025