The Peter Grünberg Institute (PGI) is dedicated to the discovery and interpretation of new phenomena in condensed matter, the development of novel materials and functional structures at the nano- and quantum-scale as well as innovation in experimental and theoretical methods. Our research places emphasis on potential long-term applications in information technology and related fields. A special focus lies on quantum materials, quantum computing and neuromorphic computing.

Focus of our Research

Device_For_Quantum_Computing

Quantum Computing

We are working together with partners from science and industry to build a European quantum computer in Jülich.

Quantencomputing

Quantum Materials

We research quantum materials with the aim of using them for storing and processing information in the medium or long term.

Neuromorphic

Neuromorphic Computing

We are researching a computational approach modelled on the human brain at all the necessary levels, from materials to circuit design and system integration.

News and Events

Harald Bolt

Peter Grünberg Institute Mourns the Loss of Prof. Harald Bolt

It is with great sadness and sympathy that the Peter Grünberg Institute (PGI) learned of the sudden death of Prof. Dr.-Ing. Harald Bolt, member of the Board of Directors of Forschungszentrum Jülich. In Prof. Bolt, PGI has lost a cosmopolitan, competent, and scientifically able contact and advisor with a broad range of interests as well as a highly respected person.

Bild

PGI Colloquium: Prof. Dr. Tobias Kampfrath, FU Berlin & Fritz Haber Institute, Berlin, Germany

To take advantage of the electron spin in future electronics, spin angular momentum needs to be transported and detected. Electric fields and temperature gradients have been shown to efficiently drive spin transport at megahertz and gigahertz frequencies. However, to probe the initial elementary steps that lead to the formation of spin currents, we need to launch and measure transport on much faster, that is, on femtosecond time scales.

Selected Projects and Cooperations

QuantumFlagship

Building a European Quantum Computer

A European quantum computer with 50 to 100 superconducting qubits is to be developed and operated on our campus within the EU's Quantum Flagship Project OpenSuperQ. Scientists from across the world will have open access to it.

ML4Q

Robust Components for Quantum Computing

In the Excellence Cluster “Matter and Light for Quantum Computing” (ML4Q) we aim, together with the universities of Cologne, Aachen, and Bonn, to develop new computing and networking architectures using the principles of quantum mechanics.

NEUROTEC

Neuro-inspired Artificial Intelligence Technologies

The new project “Neuro-inspired artificial intelligence technologies for the electronics of the future” combines existing internationally recognized scientific competences to enable the development of innovative "Beyond von Neumann" concepts to be decisively pursued using energy-efficient components.

JARA_FIT

New Approaches in Information Technology

In the research alliance JARA, section JARA-FIT, we contribute to creating the basis for the information technology of the future.

JARA-CSD

JARA-Center for Simulation and Data Science (JARA-CSD)

Within the framework of the JARA-CSD research alliance, we make the use of data analysis and HPC systems accessible to a broad spectrum of scientific users and create new opportunities for cutting-edge research.