Introduction to machine learning in the application area of fluid mechanics and combustion using HPC (PRACE-Trainingskurs, online)

Anfang
08.12.2022 07:30 Uhr
Ende
08.12.2022 16:00 Uhr
Veranstaltungsort
online
Kontakt

Jens Henrik Göbbert

j.goebbert@fz-juelich.de

(Kurs Nr. 3902022 im Trainingsprogramm 2022 des Forschungszentrums Jülich)

Der Kurs findet als Online-Veranstaltung statt. Der Link zur Online-Plattform wird nur den registrierten Teilnehmer:innen bekannt gegeben.

Inhalt:

This training course will highlight interactive analysis for ML/AI applications in the research domain of combustion theory. The program will focus on fluid mechanics, fundamentals and current challenges in combustion, as well as the use of Machine Learning (ML) and High-Performance Computing (HPC) to approach simulations of turbulent reacting flows.

This course is offered as a PRACE training course in cooperation with the Centre of Excellence for Combustion.

Vorläufige Agenda

Time

Title

Presenter

08:30–09:15

Welcome and introduction to interactive supercomputing for machine learning on HPC

Jens Henrik Göbbert (Jülich Supercomputing Centre)

09:15–10:00

Introduction to machine learning: artificial and convolutional neural networks

Ludovico Nista (RWTH Aachen University)

10:00-10:45

Machine learning for combustion modeling: Flamelet representation through ANN

Dr. Federica Ferraro (TU Darmstadt)

10:45–11:15

Coffee break

 

11:15–12:00

Hands-on session: - linear regression and rain prediction via ANN, a digit classifier using CNN - a flamelet representation with ANN

T. Jeremy P. Karpowski (TU Darmstadt)

12:00–13:30

Lunch break

 

13:30–14:15

Machine learning for combustion modeling: GAN modeling of sub-filter turbulence

Dr. Temistocle Grenga (RWTH Aachen University)

14:15–15:00

HPC with Machine Learning: multi-node multi-GPU training: theory and applications

Ludovico Nista (RWTH Aachen University)

15:00–15:30

Coffee break

 

15:30–16:15

HPC and ML for Combustion Simulation: Embedding ML into CFD code

Dr. Peicho Petkov (NCSA)

16:15–17:00

Advanced applications of AI super-resolution to combustion

Mr. Mathis Bode (Jülich Supercomputing Centre)

Voraussetzungen:

Kenntnisse in Computational Fluid Dynamics

Sprache:

Der Kurs wird auf Englisch gegeben.

Dauer:

1 Tag

Zeit:

8. Dezember 2022, 08.30-17.00 Uhr

Ort:

online

Anzahl der Teilnehmenden:

mindestens 5, höchstens 50

Referent:innen:

Jens Henrik Göbbert, Dr. Mathis Bode, JSC;
Ludovico Nista, Dr. Temistocle Grenga, RWTH Aachen University;
Dr. Federica Ferraro, Julian Bissantz, TU Darmstadt;
Dr. Peicho Petkov, NCSA

Kontakt:

  • Institute for Advanced Simulation (IAS)
  • Jülich Supercomputing Centre (JSC)
Gebäude 16.4 /
Raum 307
+49 2461/61-96498
E-Mail

Kursmaterial:

Gitlab repository and shared notes

Letzte Änderung: 20.12.2022