Introduction to Scalable Deep Learning (Trainingskurs, online)

Anfang
08.05.2023 07:00 Uhr
Ende
12.05.2023 11:00 Uhr
Veranstaltungsort
online
Kontakt

Dr. Stefan Kesselheim

(Kurs-Nr. 1622023 im Trainingsprogramm 2023 des Forschungszentrums Jülich)

Der Kurs findet als Online-Veranstaltung statt. Der Link zur Online-Plattform wird nur den registrierten Teilnehmer:innen bekannt gegeben.

Inhalt:

In this course, we will cover machine learning and deep learning and how to achieve scaling to high performance computing systems. The course aims at covering all levels, from fundamental software design to specific compute environments and toolkits. We want to enable the participants to unlock the resource of machines like the JUWELS booster for their machine learning workflows. Different from previous years we assume that the participants have a background from a university level introductory course to machine learning. Suggested options for self-teaching are given below.

We will start the course with a presentation of high performance computing system architectures and the design paradigms for HPC software. In the tutorial, we familiarize the users with the environment. Furthermore, we give a recap of important machine learning concepts and algorithms and the participants will train and test a reference model. Afterwards, we introduce how deep learning algorithms can be parallelized for supercomputer usage with Horovod. Furthermore, we discuss best practicies and pitfalls in adopting deep learning algorithms on supercomputers and learn to test their function and performance. Finally we apply the gained expertise to large scale unsupervised learning, with a particular focus on Generative Adversarial Networks (GANs).

Contents level

in hours

in %

Beginner's contents:

4.5 h

30 %

Intermediate contents:

10.5 h

70 %

Advanced contents:

0 h

0 %

Community-targeted contents:

0 h

0 %

Voraussetzungen:

We assume that the participants are familiar with general concepts of machine learning and/or deep learning, such as widely used models, losses, regularization and basic model training / testing. Many excellent self-training resources are available such as:

Hands-on experience with ML/DL framework is required, first experience with HPC systems is helpful.

Zielgruppe:

Scientists who want to unlock supercomputer power for ML/DL workflows.

Learning outcome:

After this course, participants will be able to parallelize Tensorflow and Pytorch ML workflows on HPC machines, taking into account the HPC system architecture and circumventing typical pitfalls and bottlenecks.

Sprache:

Der Kurs wird auf Englisch gehalten.

Dauer:

5 halbe Tage

Zeit:

8. - 12. Mai 2023, jeweils 09.00 - 13.00 Uhr

Ort:

Online

Teilnehmerzahl:

maximal 40

Referenten:

Dr. Stefan Kesselheim, Dr. Jenia Jitsev, Dr. Mehdi Cherti, Dr. Alexandre Strube, Jan Ebert, JSC

Kontakt:

Dr. Stefan Kesselheim

Head of SDL Applied Machine Learning & AI Consultant team

  • Institute for Advanced Simulation (IAS)
  • Jülich Supercomputing Centre (JSC)
Gebäude 14.14 /
Raum 3023
+49 2461/61-85927
E-Mail

Anmeldung:

Please register via the registration form .

Letzte Änderung: 03.04.2023