Introduction to Bayesian Statistical Learning (training course, online)
Dr. Alina Bazarova
(Kurs-Nr. 6820251 im Trainingsprogramm 2025 des Forschungszentrums Jülich)
Dieser Kurs findet als Online-Veranstaltung statt. Der Link zur Streaming-Plattform wird nur den angemeldeten Teilnehmern zur Verfügung gestellt.
Inhalt:
When observing data, the key question is: What I can learn from the observation? Bayesian inference treats all parameters of the model as random variables. The main task is to update their distribution as new data is observed. Hence, quantifying uncertainty of the parameter estimation is always part of the task. In this course we will introduce the basic theoretical concepts of Bayesian Statistics and Bayesian inference. We discuss the computational techniques and their implementations, different types of models as well as model selection procedures. We will exercise on the existing datasets use the PyMC3 framework for practicals.
The main topics are:
- Bayes theorem
- Prior and Posterior distributions
- Computational challenges and techniques: MCMC, variational approaches
- Models: Mixture Models, Bayesian Neural Networks, Variational Autoencoder, Normalizing Flows
- PyMC3 framework for Bayesian computation
- Running Bayesian models on a Supercomputer
Contents level | in hours | in % |
---|---|---|
Beginner's contents: | 4.5 h | 30 % |
Intermediate contents: | 10.5 h | 70 % |
Advanced contents: | 0 h | 0 % |
Community-targeted contents: | 0 h | 0 % |
Voraussetzungen:
Participants should be familiar with general statistical concepts, such as distributions, samples. Furthermore, familiarity with fundamental Machine Learning concepts such as regression, classification and training is helpful.
Zielgruppe:
PhD students and Postdocs
Lernziel:
The ability to set up a Bayesian approach within a given framework
Sprache:
This course is given in English.
Dauer:
5 half days
Zeit:
24-28 March 2024, 9:00 - 13:00
Ort:
Online
Anzahl der Teilnehmenden:
maximum 25
Referentin:
Dr. Alina Bazarova
Kontakt:
- Institute for Advanced Simulation (IAS)
- Jülich Supercomputing Centre (JSC)
Raum 3002
Anmeldung:
Anmeldungsformular: https://indico3-jsc.fz-juelich.de/event/215/