Materials for quantum information technology

About

Current and future technology heavily rely on the quantum nature of materials. Examples are found everywhere with applications in information technology, quantum computing, or energy efficient electronics. Superconductivity plays a major role in these materials and its understanding in complex material heterostructures is of great importance.

In our group we develop and apply density functional theory based methods that are capable of describing heterostructure of superconductors and non-superconductors which are based on the Bogoliubov-de Gennes extension to our JuKKR density functional theory code (https://jukkr.fz-juelich.de).

Together with high-throughput automation of our calculations (https://github.com/JuDFTteam/aiida-kkr) and the application of machine learning approaches we seek a deeper understanding of the physics of such complex heterostructures and aim at the computational design of materials for future quantum technologies.

Research Topics

  • Simulation
  • Density functional theory
  • Superconductivity
  • Machine learning

Contact

Dr. Philipp Rüßmann

IAS-1

Building 04.8 / Room 131

+49 2461/61-5523

E-Mail

Members

Publications
  • A. P. Weber, P. Rüßmann, N. Xu, S. Muff, M. Fanciulli, A. Magrez, P. Bugnon, H. Berger, N. C. Plumb, M. Shi, S. Blügel, P. Mavropoulos, and J. H. Dil, Spin-Resolved Electronic Response to the Phase Transition in MoTe2, Phys. Rev. Lett. 121, 156401 (2018).
  • P. Rüßmann, P. Mavropoulos, and S. Blügel, Lifetime and surface-to-bulk scattering off vacancies of the topological surface state in the three-dimensional strong topological insulators Bi2Te3 and Bi2Se3, Journal of Physics and Chemistry of Solids 128, 258-264 (2019).
  • A. Tcakaev, V. B. Zabolotnyy, C. I. Fornari, P. Rüßmann, T. R. F. Peixoto, F. Stier, M. Dettbarn, P. Kagerer, E. Weschke, E. Schierle, P. Bencok, P. H. O. Rappl, E. Abramof, H. Bentmann, E. Goering, F. Reinert, and V. Hinkov, Incipient antiferromagnetism in the Eu-doped topological insulator Bi2Te3, Phys. Rev. B 102, 184401 (2020). Editors suggestion
  • P. Rüßmann, F. Bertoldo, and S. Blügel, The AiiDA-KKR plugin and its application to high- throughput impurity embedding into a topological insulator, npj Comput Mater 7, 13 (2021).
  • P. Rüßmann, and S. Blügel, Density functional Bogoliubov-de Gennes analysis of superconducting Nb and Nb(110) surfaces, Phys. Rev. B 105, 125143 (2022).
  • S. Ghosh, P. Rüßmann, Y. Mokrousov, F. Freimuth, A. Kosma, Perspective on spin–orbit torque, topology, and reciprocal and real-space spin textures in magnetic materials and heterostructures, Journal of Applied Physics 133, 230901 (2023).
  • P. Rüßmann, M. Bahari, S. Blügel, B. Trauzettel, Inter-orbital Cooper pairing at finite energies in Rashba surface states, Phys. Rev. Research 5, 043181 (2023).
  • X.-K. Wei, A. Rehman Jalil, P. Rüßmann, Y. Ando, D. Grützmacher, S. Blügel, J. Mayer, Atomic Diffusion-Induced Polarization and Superconductivity in Topological Insulator-Based Heterostructures, ACS Nano 18 (1) 571-580 (2023).
Projects & Cooperations
Last Modified: 25.01.2024