ESCRT machinery
ESCRT machinery proteins mediate a range of cellular membrane remodeling activities that were initially described in multivesicular biogenesis and henceforth received their designation endosomal sorting complexes for transport (ESCRT). Central to these processes is the assembly of ESCRT-III subunits into polymeric structures. There are multiple isoforms that a known to hetero-complex structures performing the central membrane remodeling steps. Recently, we determined the cryo-EM structure of a helical assembly of S. cerevisiae Vps24 at 3.2 Å resolution and found that Vps24 adopts an elongated open conformation (Huber et al., 2020). We study the interaction with lipid membranes together with other ESCRT-III members such as Vps24, Vps2 and Snf7. In vitro, liposomes are deformed into neck and tubular structures by an ESCRT-III heteropolymer coat. We aim to understand the assembly structure and the mode of membrane interactions. The results will finally reveal their contribution to membrane scission events in different cellular circumstances such as cytokinesis, viral budding, nuclear envelope sealing and many more.
Related Publications
- Huber S.T., Mostafavi S., Mortensen S.A., Sachse C. Structure and assembly of ESCRT-III helical Vps24 filaments. (2020) Sci Advances 6(34): eaba4897.
- Junglas B., Huber S.T., Heidler T., Schlösser R., Mann D., Hennig R., Clarke M., Hellmann N., Schneider D. and Sachse C. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. (2021) Cell 184(14): 3674–3688.e18