link to homepage

Institute of Bio- and Geosciences

Navigation and service


Basic publications on SoilNet technology and sensor calibration

  1. Bogena H.R., M. Herbst, J.A. Huisman, U. Rosenbaum, A. Weuthen, and H. Vereecken (2010), Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J. doi:10.2136/vzj2009.0173.
  2. Bogena, H.R., J.A. Huisman, H. Meier, U. Rosenbaum, and A. Weuthen (2009), Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil. Vadose Zone J. 8. 3. 755-761, doi: 10.2136/vzj2008.0138.
  3. Bogena, H., J.A. Huisman, B. Schilling, A. Weuthen and H. Vereecken (2017): Effective calibration of low-cost soil water content sensors. Sensors 17(1): 208. doi:10.3390/s17010208.
  4. Bogena, H.R., J.A. Huisman, C. Oberdörster and H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol. 344(1-2): 32-42.
  5. Bogena, H.R., J.A. Huisman, U. Rosenbaum, A. Weuthen and H. Vereecken (2008): Evaluation of the ZigBee based wireless soil moisture network SoilNet. In: Proc. Joint Workshop of DBG Commissions I, VI, and VIII, Kiel, Germany. 29–30 May 2008. Deutsche Bodenkundliche Gesellschaft, Oldenburg, Germany. Available at
  6. Qu, W., H.R. Bogena, J.A. Huisman and Vereecken (2013): Calibration of a novel low-cost soil water content sensor based on a ring oscillator. Vadose Zone J. 12(2). DOI:10.2136/vzj2012.0139.
  7. Rosenbaum, U., H.R. Bogena, M. Herbst, J.A. Huisman, T.J. Peterson, A. Weuthen, A. Western and Vereecken, H. 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 48(10): W10544, doi:10.1029/2011WR011518
  8. Rosenbaum, U., J. A. Huisman, A. Weuthen, H. Vereecken, and H. R. Bogena (2010): Sensor-to-sensor variability of the ECH2O EC-5, TE, and 5TE sensors in dielectric liquids, Vadose Zone J., 9, 181–186, doi:10.2136/vzj2009.0036.
  9. Rosenbaum, U., J.A. Huisman, J. Vrba, H. Vereecken, and H.R. Bogena (2011), Correction of temperature and electrical conductivity effects on dielectric permittivity measurements with ECH2O sensors, Vadose Zone J., 10, 582–593, doi:10.2136/vzj2010.0083.

Peer reviewed publications on SoilNet applications

  1. Altdorff, D., von Hebel, C., Borchard, N., van der Kruk, J., Bogena, H. R., Vereecken, H., & Huisman, J. A. (2017). Potential of catchment-wide soil water content prediction using electromagnetic induction in a forest ecosystem. Environmental Earth Sciences, 76(3), 111.
  2. Baatz, R., Bogena, H. R., Franssen, H. J. H., Huisman, J. A., Qu, W., Montzka, C., & Vereecken, H. (2014). Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods. Journal of Hydrology, 516, 231-244.
  3. Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman, J. A., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030-2046.
  4. Bayat, A. T., Schönbrodt-Stitt, S., Nasta, P., Ahmadian, N., Conrad, C., Bogena, H. R., ... & Romano, N. (2020). Mapping near-surface soil moisture in a Mediterranean agroforestry ecosystem using Cosmic-Ray Neutron Probe and Sentinel-1 Data. In 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp. 201-206). IEEE.
  5. Bogena, H. R., Bol, R., Borchard, N., Brüggemann, N., Diekkrüger, B., Drüe, C., ... & Vereecken, H. (2015). A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes. Science China Earth Sciences, 58(1), 61-75.
  6. Bogena, H. R., Herrmann, F., Jakobi, J., Brogi, C., Ilias, A., Huisman, J. A., ... & Pisinaras, V. (2020). Monitoring of Snowpack Dynamics With Cosmic-Ray Neutron Probes: A Comparison of Four Conversion Methods. Frontiers in water, 2, 19.
  7. Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H. J., & Vereecken, H. (2013). Accuracy of the cosmic‐ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research, 49(9), 5778-5791.
  8. Bogena, H. R., Montzka, C., Huisman, J. A., Graf, A., Schmidt, M., Stockinger, M., ... & Vereecken, H. (2018). The TERENO‐Rur hydrological observatory: A multiscale multi‐ compartment research platform for the advancement of hydrological science. Vadose Zone Journal, 17(1), 1-22.
  9. Borchard, N., Schirrmann, M., von Hebel, C., Schmidt, M., Baatz, R., Firbank, L., ... & Herbst, M. (2015). Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany. Agriculture, ecosystems & environment, 211, 84-93.
  10. Brunetti, G., Šimůnek, J., Bogena, H., Baatz, R., Huisman, J. A., Dahlke, H., & Vereecken, H. (2019). On the information content of cosmic‐ray neutron data in the inverse estimation of soil hydraulic properties. Vadose zone journal, 18(1), 1-24.
  11. Cornelissen, T., Diekkrüger, B., & Bogena, H. (2013). Using HydroGeoSphere in a forested catchment: How does spatial resolution influence the simulation of spatio-temporal soil moisture variability?. Procedia Environmental Sciences, 19, 198-207.
  12. Cornelissen, T., Diekkrüger, B., & Bogena, H. R. (2014). Significance of scale and lower boundary condition in the 3D simulation of hydrological processes and soil moisture variability in a forested headwater catchment. Journal of hydrology, 516, 140-153.
  13. Dou, B., Wen, J., Li, X., Liu, Q., Peng, J., Xiao, Q., ... & Zhang, J. (2016). Wireless sensor network of typical land surface parameters and its preliminary applications for coarse- resolution remote sensing pixel. International Journal of Distributed Sensor Networks, 12(4), 9639021.
  14. Fang, Z., Bogena, H., Kollet, S., Koch, J., & Vereecken, H. (2015). Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis. Journal of hydrology, 529, 1754-1767.
  15. Fang, Z., Bogena, H., Kollet, S., & Vereecken, H. (2016). Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment. Journal of hydrology, 536, 365-375.
  16. Feng, H., Liu, Y., & Wu, G. (2015). Temporal variability of uncertainty in pixel-wise soil moisture: Implications for satellite validation. Remote Sensing, 7(5), 5398-5415.
  17. Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., ... & Oswald, S. (2020). A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 12(3), 2289-2309.
  18. Fersch, B., Jagdhuber, T., Schrön, M., Völksch, I., & Jäger, M. (2018). Synergies for soil moisture retrieval across scales from airborne polarimetric SAR, cosmic ray neutron roving, and an in situ sensor network. Water Resources Research, 54(11), 9364-9383.
  19. Fersch, B., Senatore, A., Adler, B., Arnault, J., Mauder, M., Schneider, K., ... & Kunstmann, H. (2020). High-resolution fully coupled atmospheric–hydrological modeling: a cross- compartment regional water and energy cycle evaluation. Hydrology and Earth System Sciences, 24(5), 2457-2481.
  20. Gebler, S., Franssen, H. J. H., Kollet, S. J., Qu, W., & Vereecken, H. (2017). High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data. Journal of hydrology, 547, 309-331.
  21. Gebler, S., Hendricks Franssen, H. J., Pütz, T., Post, H., Schmidt, M., & Vereecken, H. (2015). Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and earth system sciences, 19(5), 2145-2161.
  22. Gebler, S., Kurtz, W., Pauwels, V. R. N., Kollet, S. J., Vereecken, H., & Hendricks Franssen, H. J. (2019). Assimilation of High‐Resolution Soil Moisture Data Into an Integrated Terrestrial
    Model for a Small‐Scale Head‐Water Catchment. Water resources research, 55(12), 10358-10385.
  23. Gottselig, N., Wiekenkamp, I., Weihermüller, L., Brüggemann, N., Berns, A. E., Bogena, H. R., ... & Bol, R. (2017). A three‐dimensional view on soil biogeochemistry: A dataset for a forested headwater catchment. Journal of environmental quality, 46(1), 210-218.
  24. Graf, A., Bogena, H. R., Drüe, C., Hardelauf, H., Pütz, T., Heinemann, G., & Vereecken, H. (2014). Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water resources research, 50(6), 4837-4857.
  25. Han, X., Franssen, H. J., Rosolem, R., Jin, R., Li, X., & Vereecken, H. (2015). Correction of systematic model forcing bias of CLM using assimilation of cosmic-ray neutrons and land surface temperature: a study in the Heihe Catchment, China. Hydrology and earth system sciences, 19(1), 615-629.
  26. Han, X., Jin, R., Li, X., & Wang, S. (2014). Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland. IEEE Geoscience and Remote Sensing Letters, 11(9), 1659-1663.
  27. Hänsch, R., Jagdhuber, T., & Fersch, B. (2020). Soil-Permittivity Estimation Under Grassland Using Machine-Learning and Polarimetric Decomposition Techniques. IEEE Transactions on Geoscience and Remote Sensing.
  28. Hasan, S., Montzka, C., Rüdiger, C., Ali, M., Bogena, H. R., & Vereecken, H. (2014). Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 91, 59-71.
  29. Heistermann, M., Francke, T., Schrön, M., & Oswald, S. E. (2021). Spatio-temporal soil moisture retrieval at the catchment-scale using a dense network of cosmic-ray neutron sensors. Hydrology and Earth System Sciences Discussions, 1-35.
  30. Herbst, M., Pohlig, P., Graf, A., Weihermüller, L., Schmidt, M., Vanderborght, J., & Vereecken, H. (2021). Quantification of water stress induced within-field variability of carbon dioxide fluxes in a sugar beet stand. Agricultural and Forest Meteorology, 297, 108242.
  31. Huang, J., Desai, A. R., Zhu, J., Hartemink, A. E., Stoy, P. C., Loheide, S. P., ... & Arriaga, F. (2020). Retrieving heterogeneous surface soil moisture at 100 m across the globe via fusion of remote sensing and land surface parameters. Frontiers in Water, 2, 38.
  32. Iwema, J., Rosolem, R., Baatz, R., Wagener, T., & Bogena, H. R. (2015). Investigating temporal field sampling strategies for site-specific calibration of three soil moisture–neutron intensity parameterisation methods. Hydrology and earth system sciences, 19(7), 3203-3216.
  33. Jagdhuber, T., Fersch, B., Schrön, M., Jäger, M., Voormansik, K., & Lopez-Martinez, C. (2018). Field-scale assessment of multi-sensor soil moisture retrieval under grassland. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 6111-6114). IEEE.
  34. Jakobi, J., Huisman, J. A., Vereecken, H., Diekkrüger, B., & Bogena, H. R. (2018). Cosmic ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions. Water resources research, 54(10), 7383-7402.
  35. Jiao, Q., Zhu, Z., & Du, F. (2014). Theory and application of measuring mesoscale soil moisture by cosmic-ray fast neutron probe. In IOP Conference Series: Earth and Environmental Science (Vol. 17, No. 1, p. 012147). IOP Publishing.
  36. Jin, R., Li, X., & Liu, S. M. (2017). Understanding the heterogeneity of soil moisture and evapotranspiration using multiscale observations from satellites, airborne sensors, and a ground-based observation matrix. IEEE Geoscience and Remote Sensing Letters, 14(11), 2132-2136.
  37. Jin, R., Li, X., Ma, M., Ge, Y., Che, T., Xiao, Q., ... & Xin, X. (2016). Remote sensing products validation activity and observation network in China. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 7623-7626). IEEE.
  38. Jin, R., Li, X., Yan, B., Li, X., Luo, W., Ma, M., ... & Zhao, S. (2014). A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geoscience and Remote Sensing Letters, 11(11), 2015-2019.
  39. Jin, R., Wang, X., Kang, J., Wang, Z., Dong, C., & Li, D. (2013). HiWATER: SoilNET observation dataset in the middle reaches of the Heihe river basin. Heihe Plan Science Data Center, doi,10.
  40. Kang, J., Jin, R., Li, X., & Zhang, Y. (2016). Block kriging with measurement errors: A case study of the spatial prediction of soil moisture in the middle reaches of Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 14(1), 87-91.
  41. Kang, J., Li, X., Jin, R., Ge, Y., Wang, J., & Wang, J. (2014). Hybrid optimal design of the eco- hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors, 14(10), 19095-19114.
  42. Kiese, R., Fersch, B., Baessler, C., Brosy, C., Butterbach-Bahl, K., Chwala, C., ... & Schmid, H. P. (2018). The TERENO Pre‐Alpine Observatory: Integrating meteorological, hydrological, and biogeochemical measurements and modeling. Vadose Zone Journal, 17(1), 1-17.
  43. Koch, J., Cornelissen, T., Fang, Z., Bogena, H., Diekkrüger, B., Kollet, S., & Stisen, S. (2016). Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment. Journal of hydrology, 533, 234-249.
  44. Korres, W., Reichenau, T. G., Fiener, P., Koyama, C. N., Bogena, H. R., Cornelissen, T., ... & Schneider, K. (2015). Spatio-temporal soil moisture patterns–A meta-analysis using plot to catchment scale data. Journal of hydrology, 520, 326-341.
  45. Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., ... & Xu, Z. (2013). Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8), 1145-1160.
  46. Liu, S., Herbst, M., Bol, R., Gottselig, N., Puetz, T., Weymann, D., ... & Brueggemann, N. (2016). The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest. Geochimica et cosmochimica acta, 178, 76-86.
  47. Ma, M., Che, T., Li, X., Xiao, Q., Zhao, K., & Xin, X. (2015). A prototype network for remote sensing validation in China. Remote Sensing, 7(5), 5187-5202.
  48. Martini, E., Kögler, S., Kreck, M., Roth, K., Werban, U., Wollschläger, U., & Zacharias, S. (2021). STH-net: a model-driven soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale. Earth System Science Data Discussions, 1-14.
  49. Martini, E., Werban, U., Zacharias, S., Pohle, M., Dietrich, P., & Wollschläger, U. (2017). Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: Validation with data from a wireless soil moisture monitoring network. Hydrology and Earth System Sciences, 21(1), 495-513.
  50. Martini, E., Wollschläger, U., Kögler, S., Behrens, T., Dietrich, P., Reinstorf, F., ... & Zacharias, S. (2015). Spatial and temporal dynamics of hillslope‐scale soil moisture patterns: Characteristic states and transition mechanisms. Vadose Zone Journal, 14(4), 1-16.
  51. Martini, E., Wollschläger, U., Musolff, A., Werban, U., & Zacharias, S. (2017). Principal component analysis of the spatiotemporal pattern of soil moisture and apparent electrical conductivity. Vadose Zone Journal, 16(10), 1-12.
  52. Mengen, D., Montzka, C., Jagdhuber, T., Fluhrer, A., Brogi, C., Baum, S., ... & Vereecken, H. (2021). The SARSense Campaign: Air-and Space-Borne C-and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sensing, 13(4), 825.
  53. Metzger, J. C., Wutzler, T., Dalla Valle, N., Filipzik, J., Grauer, C., Lehmann, R., ... & Hildebrandt, A. (2017). Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrological Processes, 31(22), 3783-3795.
  54. Montzka, C., Bogena, H. R., Weihermuller, L., Jonard, F., Bouzinac, C., Kainulainen, J., ... & Vereecken, H. (2012). Brightness temperature and soil moisture validation at different scales during the SMOS validation campaign in the Rur and Erft catchments, Germany. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1728-1743.
  55. Montzka, C., Brogi, C., Mengen, D., Matveeva, M., Baum, S., Schüttemeyer, D., ... & Vereecken, H. (2020). Sarsense: A C-and L-Band SAR Rehearsal Campaign in Germany in Preparation for ROSE-L. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 2137-2140). IEEE.
  56. Nasta, P., Bogena, H. R., Sica, B., Weuthen, A., Vereecken, H., & Romano, N. (2020). Integrating Invasive and Non-invasive Monitoring Sensors to Detect Field-Scale Soil Hydrological Behavior. Frontiers in Water, 2, 26.
  57. Nasta, P., Schönbrodt-Stitt, S., Bogena, H., Kurtenbach, M., Ahmadian, N., Vereecken, H., ... & Romano, N. (2019). Integrating ground-based and remote sensing-based monitoring of near surface soil moisture in a Mediterranean environment. In 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp. 274-279). IEEE.
  58. Pfeil, I., Vreugdenhil, M., Hahn, S., Wagner, W., Strauss, P., & Blöschl, G. (2018). Improving the seasonal representation of ASCAT soil moisture and vegetation dynamics in a temperate climate. Remote Sensing, 10(11), 1788.
  59. Pisinaras, V., Panagopoulos, A., Herrmann, F., Bogena, H. R., Doulgeris, C., Ilias, A., ... & Wendland, F. (2018). Hydrologic and geochemical research at Pinios Hydrologic Observatory: Initial results. Vadose zone journal, 17(1), 1-16.
  60. Post, H., Hendricks Franssen, H. J., Graf, A., Schmidt, M., & Vereecken, H. (2015). Uncertainty analysis of eddy covariance CO 2 flux measurements for different EC tower distances using an extended two-tower approach. Biogeosciences, 12(4), 1205-1221.
  61. Qu, W., Bogena, H. R., Huisman, J. A., Martinez, G., Pachepsky, Y. A., & Vereecken, H. (2014). Effects of soil hydraulic properties on the spatial variability of soil water content: Evidence from sensor network data and inverse modeling. Vadose Zone Journal, 13(12), 1-12.
  62. Qu, W., Bogena, H. R., Huisman, J. A., Schmidt, M., Kunkel, R., Weuthen, A., ... & Vereecken, H. (2016). The integrated water balance and soil data set of the Rollesbroich hydrological observatory. Earth System Science Data, 8(2), 517-529.
  63. Rabbel, I., Bogena, H., Neuwirth, B., & Diekkrüger, B. (2018). Using sap flow data to parameterize the Feddes water stress model for Norway spruce. Water, 10(3), 279.
  64. Rabbel, I., Neuwirth, B., Bogena, H., & Diekkrüger, B. (2018). Exploring the growth response of Norway spruce (Picea abies) along a small-scale gradient of soil water supply. Dendrochronologia, 52, 123-130.
  65. Ran, Y., Li, X., Jin, R., Kang, J., & Cosh, M. H. (2017). Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid‐mean soil moisture in a high‐intensity irrigated agricultural landscape. Water Resources Research, 53(1), 283-301.
  66. Romano, N., Nasta, P., Bogena, H., De Vita, P., Stellato, L., & Vereecken, H. (2018). Monitoring hydrological processes for land and water resources management in a Mediterranean ecosystem: The Alento River Catchment Observatory. Vadose zone journal, 17(1), 1-12.
  67. Scheiffele, L. M., Baroni, G., Franz, T. E., Jakobi, J., & Oswald, S. E. (2020). A profile shape correction to reduce the vertical sensitivity of cosmic‐ray neutron sensing of soil moisture. Vadose Zone Journal, 19(1), e20083.
  68. Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., ... & Zacharias, S. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 21(10), 5009-5030.
  69. Siebers, N., & Kruse, J. (2019). Short-term impacts of forest clear-cut on soil structure and consequences for organic matter composition and nutrient speciation: A case study. PloSone, 14(8), e0220476.
  70. Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Bogena, H., Crewell, S., ... & Zerenner,T. (2015). Monitoring and modeling the terrestrial system from pores to catchments: the transregional collaborative research center on patterns in the soil–vegetation–atmospheresystem. Bulletin of the American Meteorological Society, 96(10), 1765-1787.
  71. Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., & Yang, J. (2016). Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734-748.
  72. Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B., Cornelissen, T., & Vereecken, H.(2016). Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution. Journal of hydrology, 541, 952-964.
  73. Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B., Weiler, M., & Vereecken, H. (2014). Seasonal soil moisture patterns: Controlling transit time distributions in a forested headwater catchment. Water Resources Research, 50(6), 5270-5289.
  74. Su, Z., Zeng, Y., Romano, N., Manfreda, S., Francés, F., Ben Dor, E., ... & Mannaerts, C. (2020). An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of
    Water Cycle and Local Sustainable Management of Water Resources. Water, 12(5), 1495.
  75. Sun, Y., Wu, B., Wiekenkamp, I., Kooijman, A. M., & Bol, R. (2020). Uranium Vertical and Lateral Distribution in a German Forested Catchment. Forests, 11(12), 1351.
  76. Thomas, F. M., Rzepecki, A., Lücke, A., Wiekenkamp, I., Rabbel, I., Pütz, T., & Neuwirth, B. (2018). Growth and wood isotopic signature of Norway spruce (Picea abies) along a small- scale gradient of soil moisture. Tree physiology, 38(12), 1855-1870.
  77. Tian, J., & Song, S. (2019). Application of Cosmic-Ray Neutron Sensing to Monitor Soil Water Content in Agroecosystem in North China Plain. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 7053-7056). IEEE.
  78. Tian, X., Li, Z., Chen, E., Liu, Q., Yan, G., Wang, J., ... & Zhou, J. (2015). The complicate observations and multi-parameter land information constructions on allied telemetry experiment (COMPLICATE). Plos one, 10(9), e0137545.
  79. Vilà-Guerau de Arellano, J., Ney, P., Hartogensis, O., De Boer, H., Van Diepen, K., Emin, D., ... & Graf, A. (2020). CloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre land–atmosphere interactions. Biogeosciences, 17(17), 4375-4404.
  80. Wagner, K., Oswald, S. E., & Frick, A. (2018). Multitemporal soil moisture monitoring by use of optical remote sensing data in a dike relocation area. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX (Vol. 10783, p. 107831V). International Society for Optics and Photonics.
  81. Wang, J., Ge, Y., Heuvelink, G., & Zhou, C. (2015). Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics. Remote Sensing, 7(9), 11372-11388.
  82. Wang, J., Ge, Y., Song, Y., & Li, X. (2014). A geostatistical approach to upscale soil moisture with unequal precision observations. IEEE Geoscience and Remote Sensing Letters, 11(12), 2125-2129.
  83. Wang, Q., & Chai, L. (2014). Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER. In Land Surface Remote Sensing II (Vol. 9260, p. 92602X). International Society for Optics and Photonics.
  84. Wang, Q., Fan, J., Wang, S., Yong, C., Ge, J., & You, W. (2019). Application and accuracy of cosmic-ray neutron probes in three soil textures on the Loess Plateau, China. Journal of Hydrology, 569, 449-461.
  85. Wiekenkamp, I., Huisman, J. A., Bogena, H. R., & Vereecken, H. (2020). Effects of deforestation on water flow in the vadose zone. Water, 12(1), 35.
  86. Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Graf, A., Lin, H. S., Drüe, C., & Vereecken, H. (2016). Changes in measured spatiotemporal patterns of hydrological response after partial deforestation in a headwater catchment. Journal of hydrology, 542, 648-661.
  87. Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Lin, H. S., & Vereecken, H. (2016). Spatial and temporal occurrence of preferential flow in a forested headwater catchment. Journal of hydrology, 534, 139-149.
  88. Wollschläger, U., Attinger, S., Borchardt, D., Brauns, M., Cuntz, M., Dietrich, P., ... & Zacharias, S. (2017). The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences, 76(1), 29.
  89. Wu, B., Wiekenkamp, I., Sun, Y., Fisher, A. S., Clough, R., Gottselig, N., ... & Bol, R. (2017). A dataset for three‐dimensional distribution of 39 elements including plant nutrients and other metals and metalloids in the soils of a forested headwater catchment. Journal of environmental quality, 46(6), 1510-1518.
  90. Xaver, A., Zappa, L., Rab, G., Pfeil, I., Vreugdenhil, M., Hemment, D., & Dorigo, W. A. (2020). Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications. Geoscientific Instrumentation, Methods and Data Systems, 9(1), 117-139.
  91. Yan, S., Jiang, L., & Kou, X. (2015). A new approach for the validation of coarse-resolution satellite soil moisture products. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 661-664). IEEE.
  92. Yan, S., Jiang, L., Chai, L., Yang, J., & Kou, X. (2015). Calibration of the L-MEB model for croplands in HiWATER using PLMR observation. Remote Sensing, 7(8), 10878-10897.
  93. Yan, S., Jiang, L., Yang, J., & Kou, X. (2014, November). Simulation of microwave brightness temperature over heterogeneous land surface using L-MEB model in HIWATER. In Land Surface Remote Sensing II (Vol. 9260, p. 92600Q). International Society for Optics and Photonics.
  94. Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., ... & Vereecken, H. (2011). A network of terrestrial environmental observatories in Germany. Vadose zone journal, 10(3), 955-973.
  95. Zhang, T., Jiang, L., Chai, L., Zhao, T., & Wang, Q. (2015). Estimating mixed-pixel component soil moisture contents using biangular observations from the HiWATER airborne passive microwave data. IEEE Geoscience and Remote Sensing Letters, 12(5), 1146-1150.
  96. Zhang, X., Zuo, W., Zhao, S., Jiang, L., Chen, L., & Zhu, Y. (2018). Uncertainty in upscaling in situ soil moisture observations to multiscale pixel estimations with kriging at the field level. ISPRS International Journal of Geo-Information, 7(1), 33.
  97. Zhang, Y., Liu, S., Hu, X., Wang, J., Li, X., Xu, Z., ... & Yang, X. (2020). Evaluating Spatial Heterogeneity of Land Surface Hydrothermal Conditions in the Heihe River Basin. Chinese Geographical Science, 30(5), 855-875.
  98. Zhu, Z., Tan, L., Gao, S., & Jiao, Q. (2014). Observation on soil moisture of irrigation cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3), 472-476.


Invited presentation at Hohenheim University. [pdf]

Invited presentation at EGU 2012. [pdf]

Invited presentation at Decagon/UMS Workshop 2010 [pdf]

Presentation at NovCare Konferenz 2009 in Leipzig [pdf]